skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schulze, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anion exchange materials (AEMs) containing quaternary ammonium groups with charge balancing alkaline anions have shown promise for CO2 direct air capture (DAC), particularly under low-humidity conditions. These materials can be regenerated by increasing water activity, leveraging the moisture swing (MS) effect. The regeneration step releases heat due to water sorption, providing an opportunity to develop an autothermal Vacuum Moisture Swing (aVMS) process that utilizes both a change in CO2 affinity due to moisture and the heat of water sorption for efficient atmospheric CO2 capture. In this work, the moisture-driven CO2 sorption was studied for the first time using dynamic column breakthrough (DCB) experiments and subsequent modeling of the obtained sorption isotherms. The results confirm that humidity significantly affects the shape and capacity of the CO2 isotherms. CO2 uptake increased sharply at lower relative humidity (RH), while temperature had a less pronounced effect, especially at higher RH. At 15 % RH, the CO2 loading saturates at 200 ppm, with maximum loads of 0.82 mmol/g at 25 °C and 0.64 mmol/g at 45 °C. However, at 80 % RH, the CO2 partial pressure required for saturation increases significantly, reaching 60,000 ppm, and the maximum loading drops below 0.4 mmol/g. Interestingly, under certain conditions, partial water desorption was observed during CO2 sorption, suggesting a complex interplay between the two molecules and the MS sorbent. In addition, the influence of sorbent form factor, flow rate and column geometry on the separation performance was investigated. These findings not only advance the understanding of the complex interaction between CO2 and water during moisture swing processes but also provide a basis for the engineering of a cost-effective aVMS process for CO2 DAC. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026